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Abstract. It was conjectured that a permutation matrix with bandwidth b can be written as a product
of no more than 2b− 1 permutation matrices of bandwidth 1. In this note, two proofs are given to affirm the
conjecture.
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1. Introduction. An n× n matrix A ¼ ðaijÞ is a b-banded matrix if aij ¼ 0
whenever ji− jj > b. Thus, a 0-banded matrix is diagonal, and a 1-banded matrix is
tridiagonal. In connection to factoring b-banded matrices with b-banded inverses,
the following conjecture was posted in [4].

CONJECTURE 1.1. Suppose P is a b-banded permutation matrix. Then P can be writ-
ten as the product of no more than 2b− 1 1-banded permutation matrices.

We can formulate the conjecture in terms of a permutation as follows.
CONJECTURE 1.2. Suppose σ∶f1; : : : ; ng → f1; : : : ; ng is a permutation (bijection)

with

ðσð1Þ; : : : ;σðnÞÞ ¼ ði1; : : : ; inÞ

such that all jij − jj ≤ b. Let S be the set of products of disjoint transpositions. Elements
of S switch one or more disjoint consecutive pairs (j, jþ 1). Then σ can be written as the
product (composition) of no more than 2b− 1 elements in S.

Evidently, the set S corresponds to the 1-banded permutation matrices. In this
paper, we affirm the conjecture by giving two proofs. The first one depends on a greedy
algorithm. The second proof uses sorting networks and the zero-one principle as in [1].

This conjecture deals with the special case of permutations in the main theorem of
[4], [5]: IfA andA−1 both have bandwidth b or less, thenA can be factored into a product
of block diagonal matrices of bandwidth 1. The number of factors of A depends on that
number b and not on the matrix size n. (The matrix could be singly infinite, and this
remains possible for our permutation matrices.) For permutations, where the inverse is
the transpose, the only requirement is bandedness. An upper bound on the number of
factors is not hard to establish. The conjecture states the best possible bound 2b− 1. At
the end of this paper we describe the permutations that are most difficult to factor—the
upper bound is attained.

*Received by the editors September 2, 2010; accepted for publication (in revised form) July 11, 2011;
published electronically September 20, 2011.

http://www.siam.org/journals/sidma/25-3/80747.html
†Department of Mathematics, College of William & Mary, Williamsburg, VA 23185 (caalbe@

email.wm.edu, ckli@math.wm.edu, gyu@wm.edu). The research of the second author was supported in part
by NSF grant DMS-0914670, and the research of the fourth author was supported in part by NSF grant DMS-
0852452.

‡Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139 (gs@
math.mit.edu).

1412

SIAM J. DISCRETE MATH.
Vol. 25, No. 3, pp. 1412–1417

© 2011 Society for Industrial and Applied Mathematics

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Panova [2] has found a particularly elegant proof based on wiring diagrams. Her
approach shows all factors at once, where our construction reaches the identity permu-
tation by a sequence of parallel exchanges of neighbors (which are permutations of band-
width 1). This resembles the “bubblesort” algorithm, not a favorite in the analysis of
sorting. By allowing parallel transpositions, the iteration count (less than 2b) becomes
respectable. A further proof has been proposed by Samson and Ezerman [3].

2. A greedy algorithm and proof of Conjecture 1.2.
GREEDY ALGORITHM. Set i0 ¼ 0 and inþ1 ¼ nþ 1. For each maximal subsequence

ðir; irþ1; : : : ; irþsÞ with consecutive terms in the permutation, so that

ir−1 < ir > irþ1 : : : > irþs < irþsþ1;

interchange all the pairs irþ2t and irþ2tþ1 for 0 ≤ 2t < s. Repeat this greedy step until
the sequence is strictly increasing.

We will prove the following theorem, which implies the truth of Conjecture 1.2.
THEOREM 2.1. Suppose (i1; : : : ; in) is a permutation of (1; : : : ; n). If jij − jj ≤ b for

all j ¼ 1; : : : ; n, then in no more than 2b− 1 greedy steps, (i1; : : : ; in) will be restored to
(1; : : : ; n).

This will hold true once we show the following.
LEMMA 2.2. If jij − jj ≤ b for all j ¼ 1; : : : ; n, then for every inversion ðix; iyÞ with

x < y and ix > iy, the number iy will appear on the right side of ix in no more than 2b− 1

greedy steps.
Proof. To prove Lemma 2.2, let il ¼ k ∈ f1; : : : ; ng. Assume that there are p

elements larger than k lying on its left in the permutation (i1; : : : ; in), and u1 < · · · <
up < l satisfy ij > k for j ∈ fu1; : : : ; upg. Also, assume that there are q elements smaller
than k lying on its right in the permutation (i1; : : : ; in), and l < v1 < · · · < vq satisfy
ij < k for j ∈ fv1; : : : ; vqg. All the pairs ðiuj

; kÞ and ðk; ivjÞ constitute all the inversions
that include k. The following claims can be verified readily.

Claim 1. The following statements are true:
(a) Suppose jk− lj < b. Then u1 is minimized when iu1

¼ kþ 1 and u1 ¼
kþ 1− b, and vq is maximized when ivq ¼ k− 1 and vq ¼ k− 1þ b. Conse-
quently, vq − u1 ≤ 2b− 2.

(b) Suppose l− k ¼ b. Then q ¼ 0 and u1 is minimized when iu1
¼ kþ 1 and u1 ¼

kþ 1− b so that l− u1 ¼ 2b− 1, and in this extremal case,

ðiu1
; : : : ; ilÞ ¼ ðkþ 1; : : : ; kþ b; k− bþ 1; : : : ; kÞ:

(c) Suppose k− l ¼ b. Then p ¼ 0 and vq is maximized when ivq ¼ k− 1 and vq ¼
k− 1þ b so that vq − l ¼ 2b− 1, and in this extremal case,

ðil; : : : ivqÞ ¼ ðk; kþ 1; : : : ; kþ b; k− b; k− bþ 1; : : : ; k− 1Þ:
Next, we turn to the proof of the following.
Claim 2. Suppose k 0 ¼ ij for some j ∈ fu1; : : : ; upg. In fewer than 2b− 1 greedy

steps, k 0 will be moved to the right side of k.
Let us focus on the changes of positions of the terms in the set

S ¼ fiz∶u1 ≤ z ≤ vqg
after a sequence of greedy steps is applied to (i1; : : : ; in).
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If Claim 1(c) holds, there is nothing to prove. Assume Claim 1(b) holds. Then the
subsequence (iu1

; : : : ; ivq) has no interaction with other terms in (1; : : : ; n). One readily
verifies that the order of (iu1

; : : : ; ivq) will be restored in 2b− 1 steps.
Assume that Claim 1(a) holds. Here are a few observations about the greedy step.
(1) The greedy step will never move a smaller number to the right side of a larger

number.
(2) An element w will move to the right (switch position with its right neighbor) if

w ¼ irþ2t in a certain decreasing subsequence (ir; : : : ; irþs) as described in the
greedy step.

(3) In a greedy step, an element w will move to the left (switch position with a left
neighbor) if w ¼ irþ2tþ1 in a certain subsequence (ir; : : : ; irþs) as described in
the greedy step.

(4) In a greedy step, an element w will not move if the right neighbor is larger and
one of the following holds.

(4.1) The left neighbor of w is smaller,
(4.2) w ¼ irþs in a certain subsequence (ir; : : : ; irþs) as described in the greedy step,

where s is even, so that the left neighbor of w is larger.
(5) If there are d numbers larger than k lying on the left side of k in the permutation

(σð1Þ; : : : ;σðnÞ), then in a sequence of greedy steps, k will move to the left at
most d times.

(6) If k 0 > k is such that k 0 lies on the left of k and there are r numbers larger
than k 0 lying between k and k 0, then k 0 may remain stationary for r þ 1 greedy
steps (not necessarily consecutive steps) while k is not moving left. This max-
imum delay occurs, for example, when the r elements lie immediately to the
right of k 0.

Proof. Note that a number does not move to the right if and only if its right neigh-

bor is larger and one of (4.1) or (4.2) holds. (Note also that when (4.2) happens, either
some larger element is right next to k 0, in which case we may regard the delay as caused
by the numbers on the right, or some smaller number is right next to k 0, in which case k 0

will move to the right.) So we may only consider the delays caused by the numbers on the
right of k 0.

Let k1; k2; : : : ; kr be the r elements between k 0 and k. We may assume that there are
enough small elements between kr and k so that k does not move left when k 0 remains
stationary. We observe that a small element will be moved from the right of kr to the left
of k1 in every r þ 1 consecutive greedy steps (note that no small element may be moved
in the first step). So k 0 will move in the (r þ 2)th step, and at that step, another smaller
element will be right after k 0. Therefore, k 0 will not remain stationary after r þ 1 steps
until k starts to move left.

Note that it < k if t < u1 and is > k if s > vq. By observation (1), k cannot be moved
to the left of u1 nor to the right of vq by the greedy steps.

Suppose q > 0. By observation (5), k may be moved to the right side by q greedy
steps, in which k is most difficult for k 0 to overtake. We may assume that this worst case
happens, and k is moved to the right by q steps before it is overtaken by k 0, so k will be at
the il þ q position.

Assume that there are r elements on the left of k that are also larger than k 0, and
among them, r1 elements are on the left of k 0 so that ij − r1 ≥ u1. Then by observation
(5), k 0 may be moved to the left by r1 greedy steps before k 0 overtakes k. After that, all r
elements may force k 0 to remain stationary for r þ 1 greedy steps, by observation (6).
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On the other hand, those r elements will move to the right of k before k 0, so they will
force k to move left for r positions before k 0 overtakes k. Therefore, k 0 may need to move

ðil þ qÞ− ðij − r1Þ− r ≤ vq − u1 − r

≤ 2b− 2− r ðby Claim 1ðaÞÞ
¼ 2b− r − 2

positions to overtake k. Since k 0 will move (to the right) in every greedy step other than
the r þ 1 stationary ones, k 0 overtakes k in at most 2b− 1 greedy steps. ▯

3. Sorting network and another proof of Conjecture 1.2. A sorting network
is a model of a network of wires and comparisons that is used to sort a sequence of num-
bers. Each comparison connects two wires and sorts the values on those wires by swap-
ping them if they are out of order. In a graphical representation of comparison networks,
one lines the numbers to be sorted vertically on the left side and the desired output
1; : : : ; n on the right side. Wires runs horizontally and comparisons are wired vertically.

For example, we consider the following odd-even algorithm and even-odd algorithm.
ODD-EVEN ALGORITHM.

Step 1. Compare ði2k−1; i2kÞ for all k ≥ 1, and swap them whenever i2k < i2k−1.
Step 2. Compare ði2k; i2kþ1Þ for all k ≥ 1, and swap them whenever i2kþ1 < i2k.
Alternate these two steps until the sequence is strictly increasing.

Example: Apply the odd-even algorithm to the permutation (2, 3, 4, 1); we get the
following steps: ð2; 3; 4; 1Þ → ð2; 3; 1; 4Þ → ð2; 1; 3; 4Þ → ð1; 2; 3; 4Þ.

EVEN-ODD ALGORITHM.
Step 1. Compare ði2k; i2kþ1Þ for all k ≥ 1, and swap them whenever i2kþ1 < i2k.
Step 2. Compare ði2kþ1; i2kþ2Þ for all k ≥ 1, and swap them whenever i2kþ2 < i2kþ1.

Alternate these two steps until the sequence is strictly increasing.
Example: Apply the even-odd algorithm to the permutation (2, 3, 4, 1); we get the

following steps: ð2; 3; 4; 1Þ → ð2; 3; 4; 1Þ → ð2; 3; 1; 4Þ → ð2; 1; 3; 4Þ → ð1; 2; 3; 4Þ.
These algorithms give an odd-even network and an even-odd sorting network, re-

spectively. Their graphical representations could be the full odd-even sorting network on
the left, the full even-odd sorting network in the middle, and the minimal network on the
right.

A path in a sorting network is a left-right route that possibly switches wires at the
comparisons. We can usually use “depth” to evaluate how effective a sorting algorithm is.
The depth is the maximum number of comparisons along any path from an input to an
output. In other words, the depth is the minimum sorting time in a network which allows
nonoverlapping comparison-exchanges at the same time. The above comparison net-
works are of depth 4, 4, and 3, respectively.

Our main theorem in this section is the following
THEOREM 3.1. Each permutation π with bandwidth b can be sorted by a network with

depth 2b− 1.
It is clear that Conjecture 1.2 follows from Theorem 3.1.
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We first express any permutation (i1; : : : ; in), using n binary sequences
f 1; f 2; : : : ; f n. The 0–1 sequence fk has zero in position j if ij ≤ k.

For example, the sequences f 2 and f 8 for the permutation π ¼ ð4; 2; 1; 7; 5; 3; 9; 8; 6Þ
are

f 2ðπÞ ¼ ð 1 0 0 1 1 1 1 1 1 Þ;
f 8ðπÞ ¼ ð 0 0 0 0 0 0 1 0 0 Þ.

It is clear that each permutation π uniquely corresponds to the n binary se-
quences f 1ðπÞ; f 2ðπÞ; : : : ; f nðπÞ.

The followingis a well-known result of sorting networks.
THEOREM 3.2 (the zero-one principle; see [1]). An n-line comparison network is a

sorting network if and only if it sorts all binary sequences of length n.
So to prove Theorem 3.1, it suffices to show that the network can sort all sequences

f 1ðπÞ; f 2ðπÞ; : : : ; f nðπÞ for a permutation π with bandwidth b in 2b− 1 steps. Each
binary sequence fkðπÞ has the form ð0; : : : ; 0;Wk; 1; : : : ; 1Þ, where the “window” Wk

is a binary subsequence starting with a 1 and ending with a 0.
LEMMA 3.3. For a b-banded permutation π, if fkðπÞ ¼ ð0; : : : ; 0;Wk; 1; : : : ; 1Þ, the

window Wk has length at most 2b.
Proof. By the constraint of bandwidth, f kðijÞ ¼ 0 for j < k− b, and fkðijÞ ¼ 1 for

j ≥ kþ b. So the first possible one inWk is ik−b, and the last possible zero is ikþb−1. Thus
the length of Wk is at most 2b. ▯

LEMMA 3.4. EveryWk can be sorted by an odd-even sorting network of depth at most
2b. Furthermore, Wk ¼ ð1; 1; : : : ; 1; 0; : : : ; 0Þ with b ones and b zeros is the only subse-
quence that needs depth 2b.

Proof. We only consider the case whenWk has length 2b, since any other window is
a subsequence of some window with length 2b. Note that in Wk, at most b elements are
at most k and at most b elements are more than k. So the output is I k ¼
ð0; : : : ; 0; 1; : : : ; 1Þwith b ones and b zeros. We count the maximum time (which consists
of sorting time and delay time) in the minimal backward sorting network, that is, in how
many steps we may get Wk from I k.

Observe that once all zeros are in the correct places, the ones are too. So we just need
to consider the movement of zeros. By the constraint of bandwidth, every zero needs to
move at most b steps. In particular, the first zero in I k needs to move at most b steps.

Now we consider the maximum delay time of the odd-even sorting network. Note
that a delay can occur only when a zero is compared with another zero or is not properly
aligned in the comparison due to parity of its position.

When b is odd, the bth zero is at odd position inWk, so there is no delay for this zero
in I k. Thus the bth zero will move in every step. It follows that after the first step, the
(b− 1)th zero will move in every step. Furthermore, for any k with 1 ≤ k < b, the delay
time of the kth zero is b− k, caused by the b− k zeros on its right. So the maximum
delay time is b− 1.

When b is even, the bth zero will not move in the first step. After the first step, the
process is the same as the case when b is odd. So the whole process is delayed once by the
odd-even sorting network. Therefore the maximum delay time is at most b.

Therefore, the maximum total time is at most bþ b ¼ 2b. Note that when the max-
imum time equals 2b, the first zero in I k moves b steps, thus all other zeros need to move
b steps as well. Thus Wk ¼ ð1; 1; : : : ; 1; 0; : : : ; 0Þ with b zeros and b ones. ▯

Now we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1. We call ðim1
; : : : ; im2

Þ a block of π if
(1) for any j < m1, ij < minfim1

; : : : ; im2
g, and for any j > m2, ij >

maxfim1
; : : : ; im2

g;
(2) no subsegment of ðim1

; : : : ; im2
Þ has property (1).

We first partition π into blocks. It is clear that no comparison will exchange ele-
ments of different blocks. So we may assume that π consists of a single block.

We now show that there is a sorting network with depth 2b− 1 that will sort π.
Consider the binary sequences f 1ðπÞ; : : : ; fnðπÞ. By Theorem 3.2, it suffices to show that
there is a sorting network with depth 2b− 1 that will sort every f iðπÞ.

By Lemma 3.4, the odd-even sorting network with depth 2b− 1 will sort all except
one sequence (window). The special window Wk ¼ ð1; 1; : : : ; 1; 0; : : : ; 0Þ with b zeros
and b ones is a block. For this block, we choose an even-odd sorting network (note that
the sorting in the block is independent of the rest of the permutation). Since there is no
delay at the first step, it can be sorted in at most bþ ðb− 1Þ ¼ 2b− 1 steps. ▯

4. Final remarks. Some stronger statements may be obtained, based on ideas
from our second proof.

We still consider only permutations of bandwidth b and of a single block. For a given
such permutation π, we consider the windows f 1ðπÞ; f 2ðπÞ; : : : ; fnðπÞ. Since all the win-
dows are binary sequences of length at most 2b, we can further determine the steps it
takes to sort each individual window using the even-odd sorting network or the odd-even
sorting network. If the maximum depth required is d, then we can build a sorting net-
work for the permutation with depth dþ 1, by extending the network of depth d to the
whole permutation.

With some effort, we have been able to strengthen our conclusion to the following:
If a permutation does not contain the segment ðbþ 1; bþ 2; : : : ; 2b; 1; 2; : : : ; bÞ or

ðbþ 1; bþ 2; : : : ; 2b− 1; b; 1; 2; : : : ; b− 1Þ or a shift of those segments as blocks, then it
can be sorted in at most 2b− 2 steps.

REFERENCES

[1] D. E. KNUTH, Art of Computer Programming, Vol. 3, Sorting and Searching, 2nd ed., Addison–Wesley,
Reading, MA, 1998.

[2] G. PANOVA, Factorization of banded permutations, Proc. Amer. Math. Soc., to appear.
[3] M. D. SAMSON AND M. F. EZERMAN, Factoring Permutation Matrices into a Product of Tridiagonal

Matrices, manuscript, http://arxiv.org/abs/1007.3467.
[4] G. STRANG, Fast transforms: Banded matrices with banded inverses, Proc. Natl. Acad. Sci. U.S.A., 107

(2010), pp. 12413–12416.
[5] G. STRANG, Groups of banded matrices with banded inverses, Proc. Amer. Math. Soc., 139 (2011),

pp. 4255–4264.

PERMUTATIONS AS PRODUCT OF PARALLEL TRANSPOSITIONS 1417

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

http://arxiv.org/abs/1007.3467
http://arxiv.org/abs/1007.3467
http://arxiv.org/abs/1007.3467

